Field-reversed Configuration
   HOME

TheInfoList



OR:

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
. It confines a plasma on closed magnetic
field line A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary directed line which is tangent to the field vector at each point along its length. A diagram showing a representative set of neighboring field ...
s without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring. FRCs are closely related to another self-stable
magnetic confinement fusion Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with ...
device, the
spheromak A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the s ...
. Both are considered part of the
compact toroid Compact toroids are a class of toroidal plasma configurations that are self-stable, and whose configuration does not require magnet coils running through the center of the toroid. They are studied primarily in the field of fusion energy, where t ...
class of fusion devices. FRCs normally have a plasma that is more elongated than spheromaks, having the overall shape of a hollowed out sausage rather than the roughly spherical spheromak. FRCs were a major area of research in the 1960s and into the 1970s, but had problems scaling up into practical
fusion triple product The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is ...
s. Interest returned in the 1990s and , FRCs were an active research area.


History

The FRC was first observed in laboratories in the late 1950s during theta pinch experiments with a reversed background magnetic field. The first studies were at the
United States Naval Research Laboratory The United States Naval Research Laboratory (NRL) is the corporate research laboratory for the United States Navy and the United States Marine Corps. It was founded in 1923 and conducts basic scientific research, applied research, technological ...
(NRL) in the 1960s. Considerable data were collected, with over 600 published papers. Almost all research was conducted during
Project Sherwood Project Sherwood was the codename for a United States program in controlled nuclear fusion during the period it was classified. After 1958, when fusion research was declassified around the world, the project was reorganized as a separate division w ...
at
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
(LANL) from 1975 to 1990, and during 18 years at the Redmond Plasma Physics Laboratory of the
University of Washington The University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington. Founded in 1861, Washington is one of the oldest universities on the West Coast; it was established in Seattl ...
, with the large ''s'' experiment (LSX). Later research was at the
Air Force Research Laboratory The Air Force Research Laboratory (AFRL) is a scientific research organization operated by the United States Air Force Materiel Command dedicated to leading the discovery, development, and integration of aerospace warfighting technologies, pl ...
(AFRL), the Fusion Technology Institute (FTI) of the
University of Wisconsin-Madison A university () is an institution of higher (or tertiary) education and research which awards academic degrees in several academic disciplines. Universities typically offer both undergraduate and postgraduate programs. In the United States, th ...
,
Princeton Plasma Physics Laboratory Princeton Plasma Physics Laboratory (PPPL) is a United States Department of Energy national laboratory for plasma physics and nuclear fusion science. Its primary mission is research into and development of fusion as an energy source. It is known ...
, and the
University of California, Irvine The University of California, Irvine (UCI or UC Irvine) is a public land-grant research university in Irvine, California. One of the ten campuses of the University of California system, UCI offers 87 undergraduate degrees and 129 graduate and p ...
. Private companies now study FRCs for electricity generation, including
General Fusion General Fusion is a Canadian company based in Vancouver, British Columbia, which is developing a fusion power device based on magnetized target fusion (MTF). The company was founded in 2002 by Dr. Michel Laberge. The company has more than 200 emp ...
,
TAE Technologies TAE Technologies, formerly Tri Alpha Energy, is an American company based in Foothill Ranch, California developing aneutronic fusion power. The company's design relies on an advanced beam-driven field-reversed configuration (FRC), which combin ...
, and
Helion Energy Helion Energy, Inc. is an American fusion research company, located in Everett, Washington. They are developing a magneto-inertial fusion technology to produce helium-3 and fusion power via aneutronic fusion, which could produce low-cost clean e ...
. The Electrodeless Lorentz Force Thruster (ELF) developed by MSNW was an attempt to design a space propulsion device. ELF was a candidate in
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
's NextSTEP advanced electric propulsion program, along with the X-3 Nested-Channel Hall Thruster and
VASIMR The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic ...
before MSNW dissolved.


Applications

The primary application is for fusion power generation. The FRC is also considered for
deep space exploration Deep space exploration (or deep-space exploration) is the branch of astronomy, astronautics and space technology that is involved with exploring the distant regions of outer space. However, there is little consensus on the meaning of "distant" regi ...
, not only as a possible nuclear energy source, but as means of accelerating a propellant to high levels of
specific impulse Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine (a rocket using propellant or a jet engine using fuel) creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is ...
(Isp) for electrically powered spaceships and
fusion rocket A fusion rocket is a theoretical design for a rocket driven by fusion propulsion that could provide efficient and sustained acceleration in space without the need to carry a large fuel supply. The design requires fusion power technology beyond cu ...
s, with interest expressed by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
.


Comparisons

Producing fusion power by confining the plasma with magnetic fields is most effective if the field lines do not penetrate solid surfaces but close on themselves into circles or toroidal surfaces. The mainline confinement concepts of
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
and
stellarator A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the ...
do this in a toroidal chamber, which allows a great deal of control over the magnetic configuration, but requires a very complex construction. The field-reversed configuration offers an alternative in that the field lines are closed, providing good confinement, but the chamber is cylindrical, allowing simpler, easier construction and maintenance. Field-reversed configurations and
spheromak A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the s ...
s are together known as
compact toroid Compact toroids are a class of toroidal plasma configurations that are self-stable, and whose configuration does not require magnet coils running through the center of the toroid. They are studied primarily in the field of fusion energy, where t ...
s.
Spheromak A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the s ...
s and FRC differ in that a spheromak has an extra toroidal field. This toroidal field can run along the same or opposite direction as the spinning plasma. In the spheromak the strength of the toroidal magnetic field is similar to that of the
poloidal field The terms toroidal and poloidal refer to directions relative to a torus of reference. They describe a three-dimensional coordinate system in which the poloidal direction follows a small circular ring around the surface, while the toroidal direct ...
. By contrast, the FRC has little to no toroidal field component and is confined solely by a poloidal field. The lack of a toroidal field means that the FRC has no
magnetic helicity In plasma physics, magnetic helicity is a measure of the linkage, twist, and writhe of a magnetic field. In ideal magnetohydrodynamics, magnetic helicity is conserved. When a magnetic field contains magnetic helicity, it tends to form large-scal ...
and that it has a high beta. The high beta makes the FRC attractive as a
fusion reactor Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices ...
and well-suited to aneutronic fuels because of the low required magnetic field. Spheromaks have ''β'' ≈ 0.1 whereas a typical FRC has ''β'' ≈ 1.


Formation

In modern FRC experiments, the plasma current that reverses the magnetic field can be induced in a variety of ways. When a field-reversed configuration is formed using the
theta-pinch Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of magnetic fields used to confine the plasma (physics), plasma fuel in the reactor, arranged to run around a cylinder in the direction norm ...
(or inductive electric field) method, a cylindrical coil first produces an axial magnetic field. Then the gas is pre-ionized, which "freezes in" the bias field from a
magnetohydrodynamic Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, ...
standpoint, finally the axial field is reversed, hence "field-reversed configuration." At the ends, reconnection of the bias field and the main field occurs, producing closed field lines. The main field is raised further, compressing and heating the plasma and providing a vacuum field between the plasma and the wall. Neutral beams are known to drive current in
Tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
s by directly injecting charged particles. FRCs can also be formed, sustained, and heated by application of neutral beams. In such experiments, as above, a cylindrical coil produces a uniform axial magnetic field and gas is introduced and ionized, creating a background plasma. Neutral particles are then injected into the plasma. They ionize and the heavier, positively-charged particles form a current ring which reverses the magnetic field.
Spheromak A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the s ...
s are FRC-like configurations with finite toroidal magnetic field. FRCs have been formed through the merging of spheromaks of opposite and canceling toroidal field. Rotating magnetic fields have also been used to drive current. In such experiments, as above, gas is ionized and an axial magnetic field is produced. A rotating magnetic field is produced by external magnetic coils perpendicular to the axis of the machine, and the direction of this field is rotated about the axis. When the rotation frequency is between the ion and electron gyro-frequencies, the electrons in the plasma co-rotate with the magnetic field (are "dragged"), producing current and reversing the magnetic field. More recently, so-called odd parity rotating magnetic fields have been used to preserve the closed topology of the FRC.


Single particle orbits

FRCs contain an important and uncommon feature: a "magnetic null," or circular line on which the magnetic field is zero. This is necessarily the case, as inside the null the magnetic field points one direction and outside the null the magnetic field points the opposite direction. Particles far from the null trace closed cyclotron orbits as in other magnetic fusion geometries. Particles which cross the null, however, trace not ''cyclotron'' or circular orbits but ''betatron'' or figure-eight-like orbits, as the orbit's curvature changes direction when it crosses the magnetic null. Because the particle's orbits are not cyclotron, models of plasma behavior based on cyclotron motion like
magnetohydrodynamics Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, ...
(MHD) are inapplicable in the region around the null. The size of this region is related to the s-parameter, or the ratio of the distance between the null and separatrix, and the thermal ion gyroradius. At high-s, most particles do not cross the null and this effect is negligible. At low-s, ~2, this effect dominates and the FRC is said to be "kinetic" rather than "MHD."


Plasma stability

At low s-parameter, most ions inside an FRC follow large
betatron A betatron is a type of cyclic particle accelerator. It is essentially a transformer with a torus-shaped vacuum tube as its secondary coil. An alternating current in the primary coils accelerates electrons in the vacuum around a circular path. Th ...
orbits In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a p ...
(their average
gyroradius The gyroradius (also known as radius of gyration, Larmor radius or cyclotron radius) is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field. In SI units, the non-relativistic gyroradius is given by :r_ ...
is about half the size of the plasma) which are typical in
accelerator physics Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams ...
rather than
plasma physics Plasma ()πλάσμα
, Henry George Liddell, R ...
. These FRCs are very stable because the plasma is not dominated by usual small gyroradius particles like other
thermodynamic equilibrium Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In the ...
or
nonthermal plasma A nonthermal plasma, cold plasma or non-equilibrium plasma is a plasma which is not in thermodynamic equilibrium, because the electron temperature is much hotter than the temperature of heavy species (ions and neutrals). As only electrons are ther ...
s. Its behavior is not described by classical
magnetohydrodynamics Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydro­magnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magneto­fluids include plasmas, liquid metals, ...
, hence there are no
Alfvén waves Alfvén may refer to: People * Hannes Alfvén (1908–1995), Swedish plasma physicist and Nobel Prize in Physics laureate * Hugo Alfvén (1872–1960), Swedish composer, conductor, violinist, and painter * Marie Triepcke Krøyer Alfvén (1867–19 ...
and almost no MHD instabilities despite their theoretical prediction, and it avoids the typical "anomalous transport", i.e. processes in which excess loss of
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
s or
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
occurs. , several remaining instabilities are being studied: * The tilt and shift modes. Those instabilities can be mitigated by either including a passive stabilizing conductor, or by forming very oblate plasmas (i.e. very elongated plasmas), or by creating a self-generated toroidal field. The tilt mode has also been stabilized in FRC experiments by increasing the ion gyroradii. * The
magnetorotational instability The magnetorotational instability (MRI) is a fluid instability that causes an accretion disk orbiting a massive central object to become turbulent. It arises when the angular velocity of a conducting fluid in a magnetic field decreases as the d ...
. This mode causes a rotating elliptical distortion of the plasma boundary, and can destroy the FRC when the distorted plasma comes in contact with the confinement chamber. Successful stabilization methods include the use of a quadrupole stabilizing field, and the effects of a rotating magnetic field (RMF).


Experiments


Spacecraft propulsion

Field-reversed configuration devices have been considered for spacecraft propulsion. By angling the walls of the device outward, the plasmoid can be accelerated in the axial direction and out of the device, generating thrust.


See also

* List of plasma (physics) articles


External links

* Google techtalks
''Nuclear Fusion: Clean Power for the Next Hundred Centuries''
* University of Washingto


References

{{Nuclear technology Magnetic confinement fusion